Quadratic Function: standard form \qquad sometimes called a \qquad
Vertex: \qquad
Axis of symmetry: \qquad
Form: $y=a x^{2}$. Graph each quadratic function. Label the vertex and axis of symmetry.

1. $y=x^{2}$

x	y
-2	
-1	
0	
1	
2	

3. $y=2 x^{2}$

x	y
-2	
-1	
0	
1	
2	

2. $y=-x^{2}$

x	y
-2	
-1	
0	
1	
2	

4. $y=\frac{1}{3} x^{2}$

x	y
-6	
-3	
0	
3	
6	

4. Compare the graphs from $\# 1$ and $\# 2$. How are they similar? How do they differ?
5. Compare the graphs of $\# 1, \# 3$, and $\# 4$. How are they similar? How do they differ?
6. What is the y-intercept of each graph?

Graphing Quadratic Functions

Based on Graphs \#1-2, we can conclude that for $y=a x^{2}$:

- If $a>0$, then the parabola will open \qquad , the vertex will be \qquad and the axis of symmetry will be \qquad .
- If $a<0$, then the parabola will open \qquad , the vertex will be \qquad and the axis of symmetry will be \qquad .

Form: $y=a x^{2}+c$.
7. $y=x^{2}+1$

x	y
-2	
-1	
0	
1	
2	

8. $y=x^{2}-2$

x	y
-2	
-1	
0	
1	
2	

9. $y=-2 x^{2}-3$

x	y
-2	
-1	
0	
1	
2	

10. $y=\frac{1}{3} x^{2}+2$

x	y
-6	
-3	
0	
3	
6	

11. Compare the graphs from $\# 1, \# 7$ and $\# 8$. How are they similar? How do they differ?
12. Compare the graphs from $\# 3$ and $\# 9$, then $\# 4$ and $\# 10$. How are they similar? How do they differ?
13. Find the y-intercept of $\# 7-10$. Compare the value of c and the y-intercept of each graph.

Based on Graphs \#7-10, we can conclude that for $y=a x^{2}+c$:

- The value of c determines the \qquad of the graph.

