$\qquad$

## Common Core Math I

## Linear Regression

## Best Fit Line

You have learned how to find and write equations for lines of fit by hand. Many calculators use complex algorithms that find a more precise line of fit called the best-fit line.

One algorithm is called linear regression. We can find the linear regression.
To enter the data: STAT $^{\text {EDIT }} \mathrm{L}_{1}$ is independent variable; $\mathrm{L}_{2}$ is dependent variable
Calculator Steps: $\quad$ STAT CALC 4: LinReg VARS Y-VARS FUNCTION 1: $\mathrm{Y}_{1}$ Enter
Your calculator may also compute a number called the correlation coefficient. This number will tell you if your correlation is positive or negative and how closely the equation is modeling the data. The closer the correlation coefficient is to 1 or -1 , the more closely the equation models the data.

To turn the correlation coefficient on: 2nd 0 DiagnosticOn | Enter |
| :--- |

- If the correlation coefficient is close to 1 or -1 , the fit is $\qquad$ .
- The farther away from 1 or -1, the $\qquad$ the fit.
- If the scatterplot appears random, there is $\qquad$ .
- If the correlation coefficient is positive, the slope will be $\qquad$ .
- If the correlation coefficient is negative, the slope will be $\qquad$ .

We will often need to interpret the slope and $y$-intercept in the context of the problem. Slope can often follow this pattern:
(Topic of data) (increases/decreases) (slope) ( $y$-units) per (x-units).
The $y$-intercept is the starting value, or what the dependent variable is when the independent variable is 0 .

EXAMPLE: The average lifespan of American women has been tracked, and the model for the data is $y=0.2 t+73$, where $t=0$ corresponds to 1960 .

INTERPRETATION:

## Real World Example 1: Box Office

The table shows the amount of money made by movies in the United States. Use a graphing calculator to write an equation for the best-fit line for that data.

| Year | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Income (\$ billion) | 7.48 | 8.13 | 9.19 | 9.35 | 9.27 | 8.95 | 9.25 | 9.65 | 9.85 | 10.21 |

1. Enter the data into a list using the graphing calculator.

Let $\mathrm{x}=$ the number of years after 2000 .
2. Find the best fit line using the graphing calculator. $\qquad$
$r=$ $\qquad$ Describe the fit.

Interpret the slope. $\qquad$
$\qquad$

Interpret the $y$-intercept. $\qquad$
3. EXTRAPOLATION: Use the equation and the table in the graphing calculator to predict what the box office income will be in 2013 . State your answer as a complete sentence.
4. INTERPOLATION: Use the equation and the table in the graphing calculator to predict what the expected box office income was in 2008. How does the compare to the actual box office income given in the table? What is the difference?

## REAL WORLD EXAMPLE 2: HOCKEY

The table below shows the number of goals scored by the Mustang Girls Hockey Team per year. Let x represent the number of years after 2003.

| Year | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Goals | 63 | 44 | 55 | 63 | 81 | 85 | 93 | 84 |

1. Find the best fit line using the graphing calculator.
$r=$ $\qquad$ Describe the fit.

Interpret the slope. $\qquad$
$\qquad$

Interpret the y-intercept. $\qquad$
$\qquad$
2. ANALYSIS: If this were your hockey team, would you want to use this model to predict the number of goals expected in 2013 ? Why or why not?
$\qquad$
$\qquad$
$\qquad$
$\qquad$


Did you know that Minnesota was the first state to establish women's hockey as a varsity high school sport in 1994?

Women's hockey first appeared in the Winter Olympics in 1998.

